Reg No.:	Name:
----------	-------

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

THIRD SEMESTER B.TECH DEGREE EXAMINATION(R&S), DECEMBER 2019

Course Code: EC205

Course Name: ELECTRONIC CIRCUITS

Max. Marks: 100 **Duration: 3 Hours**

PART A

Marks Answer any two full questions, each carries 15 marks.

- (4)
- a) Draw an RC differentiator circuit. Give the conditions for an RC circuit to behave 1 as a differentiator.
 - b) Design an integrator for an input frequency of 1kHz. (3)
 - c) A high pass RC circuit has a 3dB cut off frequency of 10Hz. Plot the output (8) waveform of the circuit, if a 20Hz symmetric square wave with 2V peak to peak is applied to it. Mark the time and voltage levels accurately.
- 2 a) Define stability factor for leakage current. Derive an equation for stability factor (4) of emitter bias circuit.
 - b) For a fixed bias circuit with $R_B=300k\Omega$, $R_C=2k\Omega$, $\beta=50$, $V_{CC}=9V$, find the Q point (4) and stability factor.
 - c) A silicon transistor with β =50 is used in a voltage divider bias circuit with (7) V_{BE}=0.6V, V_{CC}=22.5V and R_C=5.6K. It is desired to establish Q point at (8.2V, 2.3mA) and required stability factor is $S \le 3$. Design the voltage divider circuit.
- 3 a) Draw a common base amplifier circuitand show its small signal hybrid π model. (4)
 - b) Prove that the mid band gain of an emitter follower circuit is approximately equal (5) to unity.
 - b) For a RC coupled amplifier with bypass capacitor, the circuit components are (6) $R_1=35.2 \text{ k}\Omega$, $R_2=5.83 \text{ k}\Omega$, $R_C=10\text{k}\Omega$, $R_E=1\text{K}$ and $R_S=0$. The transistor parameters are $V_{BE(ON)}=0.7V$, $V_A=100V$, and $\beta=100$. Determine the Q-point and small signal voltage gain $[V_{CC}=5V]$.

PART B

Answer any two full questions, each carries 15 marks.

- 4 a) Explain the terms beta cut off frequency (f_B) and unity gain bandwidth (f_T) in (6) relation with short circuit gain of a transistor. Derive an expression for f_{β} and f_{T} in terms of transistor parameters.
 - b) Determine the upper cut-off frequency of a common emitter amplifier (9)

- configuration using hybrid π equivalent circuit.
- 5 a) What is a cascode amplifier? Draw the circuit diagram and derive an expression (9) for mid band voltage gain of cascode amplifier.
 - b) An amplifier without feedback has a voltage gain of 50, input impedance $1k\Omega$ and output impedance $2.5k\Omega$. Obtain the input and output impedances of current-shunt negative feedback amplifier using the above amplifier with a feedback factor of 0.2.
- 6 a) Draw the circuit diagram of a Wien bridge oscillator. Explain how Barkhausen (8) criterion for oscillation is satisfied by the circuit and derive an expression for the frequency of oscillation.
 - b) Differentiate between synchronous and stagger tuned amplifiers. (3)
 - c) Draw the circuit diagram of a Colpitts oscillator (4)

PART C

Answer any two full questions, each carries 20 marks.

- 7 a) Classify power amplifiers based on collector current waveforms and conduction (5) angle.
 - b) Draw the circuit diagram of class A series fed power amplifier and prove that the (10) conversion efficiency is 50% by using transformer coupling.
 - c) What is cross over distortion in class B power amplifier? How is it avoided? (5)
- 8 a) Draw the circuit diagram of bootstrap sweep circuit. (4)
 - b) Explain the working of an astable multivibrator with necessary base and collector (9) waveforms.
 - c) Derive an expression for the free running frequency of a stable multivibrator. (7)
- 9 a) With a neat circuit diagram explain the working of a transistor based shunt voltage (9) regulator.
 - b) How is short circuit protection provided in series voltage regulator. (7)
 - c) Analyze a common source amplifier with source resistance bypassed and derive (4) expressions for input impedance, output impedance and voltage gain using small signal equivalent circuit..
